$\qquad$
Geometry Notes Packet

### 4.1 WHaT are CONGruent FIGures?

Objectives: Understand the concept of congruent figures Accurately identify corresponding parts of figures

## ACCESS:NG PRiOR KNOWLEDGE

Consider two triangles, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{FDE}$, with vertices $A(1,9), B(-3,2), C(1,2), D(2,3)$, $E(2,-1) \& F(9,-1)$.

Draw a diagram and explain why $\triangle A B C \cong \triangle F D E$ using transformations.


อ Congruent Figures
> Two geometric figures are congruent if one of them could be placed on top of the other and fit exactly, point for point, side for side, and angle for angle.

- Congruent figures have the same shape \& size.

อ Congruent Triangles
$>$ Every triangle has six parts-three angles and three sides.

- $\triangle A B C \cong \triangle F E D$
- Angles
- Sides


Congruent triangles-all pairs of corresponding parts are congruent.
〕 More About Correspondences

- $\triangle$ KET is a reflection of $\triangle \mathrm{KIT}$ over $\overline{K T}$ List the parts that reflect onto each other
- Angles
- Sides


Page 1 of $\mathbf{3 5}$

Whenever a side or an angle is shared by two figures, we can say that the side or angle is congruent to itself.

- Reflexive Property-Any segment or angle is congruent to itself.


## อ Congruent Parts of Congruent Triangles

$>$ In the diagram below, triangle $X Y Z$ is congruent to triangle $M N P$.
$>$ Written as: $\triangle X Y Z \cong \triangle M N P$. $\quad$ CONGRUENCE

- The notation shows the corresponding vertices and thus the corresponding angles \& sides.


Corresponding Angles


Corresponding Sides

Examples: Determine whether the angles or sides are corresponding angles, corresponding sides, or neither.

1. $\angle \mathrm{C} \& \angle \mathrm{~L}$
2. $\overline{A C} \& \overline{J K}$
3. $\overline{B C} \& \overline{K L}$
4. $\angle \mathrm{B} \& \angle \mathrm{~L}$


Given that $\triangle X Y Z \cong \triangle E F D$, determine the congruent side or angle that corresponds to the side or angle.
5. $\angle Y$
6. $\angle D$
7. $\overline{Z X}$
8. $\overline{F D}$

Example 9: Given that $\triangle S T U \cong \triangle Y X Z$, list all corresponding congruent parts.


Angles
Sides


Example 10: Given $\triangle A B C \cong \triangle D E F$, find the length of $\overline{D F}$ and $m \angle B$.


Example 11: Which congruence statement is correct? Why?
A. $\triangle J K L \cong \triangle M N P$
B. $\triangle J K L \cong \triangle N M P$
c. $\triangle J K L \cong \triangle N P M$


อ Determine Whether Triangles are Congruent $>$ in the figure, $\overline{A B} \| \overline{C D}$ and $\overline{B C} \| \overline{A D}$

- Determine whether two triangles are congruent. If they are, write a congruence
 statement.
- Remember that when parallel lines are cut by a transversal, the alternate interior angles are congruent.
- Start by listing the side(s) \&/or angles you know to be congruent.
- Then list any info you can deduce from the figure.
! Be on the lookout for vertic
mples: Determining congruence
Determine whether the triangles are congruent. If they are, write a congruence statement.

12. 


13.


Example 14: Given that $\triangle F G H \cong \triangle T S R$, determine which congruence statement does not describe the triangles.
a. $\triangle \mathrm{HGF} \cong \triangle \mathrm{RST}$
b. $\triangle F H G \cong \triangle T R S$
c. $\triangle \mathrm{GFH} \cong \triangle \mathrm{SRT}$

## Examples: Geo-Gebra

15. If $\triangle R S T \cong \triangle X Y Z$, find the value of $n$.

To do this problem you must identify the angle congruent to $\angle Y$.

16. If $\triangle R Q P \cong \triangle O N M$, find the value of $m$.

To do this problem you must identify the side congruent to $\overline{M N}$.

17. Given: $\triangle \mathrm{ABC} \cong \triangle D E F, A B=15, B C=20, A C=25 \& E F=3 x-7$

Find: x

### 4.2 MeTHODS OF PrOVING TIIANGLLS CONGTUENT

Objectives: Identify included angles \& sides
Apply the SSS, SAS, ASA, \& AAS postulates

## ACCESS: Ng PRiOR KNOWLEDGE

a. If $C$ is the midpoint of $\overline{B E}$, then what two segments are congruent?
b. If $\overline{B E} \& \overline{A D}$ intersect at $C$, what two angles must be congruent and why?
c. Name two other congruent angles and explain why they are congruent.

d. If $\overrightarrow{B D}$ bisects $\angle A B C$, then what two angles are congruent?
e. Why is $\overline{B D} \cong \overline{B D}$ ?


Proving triangles congruent could be a very tedious task if we had to verify the congruence of every one of the six pairs of corresponding parts.

Triangles have some special properties that will enable us to prove two triangles are congruent by comparing only three specially chosen pairs of corresponding parts.

## Side-Side-Side Congruence Postulate (SSS)

Words If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.

Symbols If Side $\overline{M N} \cong \overline{Q R}$, and
Side $\overline{N P} \cong \overline{R S}$, and
Side $\overline{P M} \cong \overline{S Q}$,
then $\triangle M N P \cong \triangle Q R S$.


Examples: Using the SSS Congruence Postulate Does the diagram give enough information to use the SSS Congruence Postulate? Explain your reasoning.


List those angles \&/or sides you know to be congruent:


List those angles \&/or sides you know to be congruent:

## 〕 The "Included" Angle

$>$ In $\triangle \mathrm{ABC}, \angle B$ is the included angle between sides $\overline{A B} \& \overline{B C}$.

included angle

## Example 3: Identifying the Included Angle


d. $\overline{K M} \& \overline{L M}$
e. $\overline{L K} \& \overline{K M}$

## Side-Angle-Side Congruence Postulate (SAS)

Words If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

Symbols If Side $\overline{P Q} \cong \overline{W X}$, and
Angle $\angle Q \cong \angle X$, and
Side $\overline{Q R} \cong \overline{X Y}$,

then $\triangle P Q R \cong \triangle W X Y$.

## Examples: Using the SAS Congruence Postulate

 Does the diagram give enough information to use the SAS Congruence Postulate? Explain your reasoning.4. 



List those angles \&/or sides you know to be congruent:
5.


List those angles \&/or sides you know to be congruent:
6. What additional information is needed to prove the two triangles are congruent by the SAS Congruence Postulate?


## Example 7: Identifying the Included Side

Use the diagram to name the included side between the two given angles.
a. $\angle L \& \angle M$
b. $\angle M \& \angle N$
c. $\angle L \& \angle N$


## Angle-Side-Angle Congruence Postulate (ASA)

Words If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

Symbols If Angle $\angle A \cong \angle D$, and
Side $\overline{A C} \cong \overline{D F}$, and
Angle $\angle C \cong \angle F$, then $\triangle A B C \cong \triangle D E F$.


Examples: Using the ASA Congruence Postulate Does the diagram give enough information to use the ASA Congruence Postulate? Explain your reasoning.


List those angles \&/or sides you know to be congruent:
9.


List those angles \&/or sides you know to be congruent:
10. What additional information is needed to prove the two triangles are congruent by the ASA Congruence Postulate?


〕 The "Non-Included" Side:


Example 11: Identifying Included \& Non-Included Sides
Tell whether the side is included or not included between the given angles.
$\overline{F G}$ is $\qquad$ between $\angle F$ and $\angle G$.
$\overline{G H}$ is $\qquad$ between $\angle F$ and $\angle G$.
$\overline{F H}$ is $\qquad$ ? between $\angle H$ and $\angle G$.

$\overline{H G}$ is ? between $\angle H$ and $\angle G$.

## Angle-Angle-Side Congruence Theorem (AAS)

Words If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.

Symbols if Angle $\angle A \cong \angle D$, and
Angle $\angle C \cong \angle F$, and
Side $\overline{B C} \cong \overline{E F}$, then $\triangle A B C \cong \triangle D E F$.


## Examples: Using the AAS Congruence Postulate

Based on the diagram, can you use the AAS Congruence Theorem to show that the triangles are congruent? If not, what additional congruence is needed?
12.


List those angles \&/or sides you know to be congruent:
13.


List those angles \&/or sides you know to be congruent:

## Examples: Deciding Whether Triangles are Congruent

Does the diagram given enough information to show that the triangles are congruent? If so, state the method - SSS, SAS, ASA or AAS - you would use.
Diagram

### 4.3 Proving TIIaNGLES CONGTUENT

Objectives: Apply the SSS, SAS, \& ASA postulates
Prove that two triangles are congruent in a two-column proof
Structure statements and reasons to formal a logical argument
〕 Methods of Proving Triangles Congruent

## The SSS Postulate

- If three sides of one triangle are congruent to the corresponding sides of another triangle, the two triangles are congruent. (Side-Side-Side ~ SSS)


Side
$\overline{G H} \cong$ $\qquad$


Side

$$
\ldots \overline{L J}
$$

Side

## The SAS Postulate

- If two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle, the two triangles are congruent. (Side-Angle-Side ~SAS)


Side
$\overline{R P} \cong$ $\qquad$

## The ASA Postulate

- If two angles and the included side of one triangle are congruent to the corresponding parts of another triangle, the two triangles are congruent. (Angle-Side-Anale ~ASA)


Angle

$$
\angle Q R P \cong
$$

Be on the lookout for: (1) vertical angles \& (2) shared sides - reflexive property

## Examples: Congruent? SSS, SAS or ASA?

Determine whether you could prove that the triangles are congruent. If so, write a congruence statement \& identify the postulate you could use.
1.

2.

3.


## Examples:

In 4-7, you are given the congruent angles and sides shown by the tick marks. Name the additional congruent sides or angles needed to prove that the triangles are congruent by each specified method.
4. a. SSS
b. SAS

5. a. SAS
b. ASA

6. Prove: $\triangle P W T \cong \triangle S V R$
a. SAS
b. ASA

7. Prove: $\triangle \mathrm{AEC} \cong \triangle \mathrm{DEB}$
a. SSS
b. SAS


Page 11 of $\mathbf{3 5}$

PROOFS:
8. Given: $\overline{\overline{M N} \cong \overline{P O}}$

Prove: $\quad \triangle M N O \cong \triangle P O N$
Statements

Reasons

9. Given: $\overline{A C} \cong \overline{D C}$

Prove: $\triangle A B C \cong \triangle D E C$


| Statements | Reasons |
| :--- | :--- |
|  |  |
|  |  |

10. Given: $\overline{A B} \cong \overline{C D}$
$\overline{A F} \cong \overline{D E}$
$\angle A \cong \angle D$
Prove: $\triangle F A C \cong \triangle E D B$

Statements
Reasons


### 4.4 CPCTC \& CIICLES

Objectives: Apply the principle of CPCTC and AAS
Apply properties of circles and their radii
Prove that two triangles are congruent in a two-column proof Structure statements and reasons to formal a logical argument

〕 congruent triangles-All pairs of corresponding parts are congruent
อ СРСТС
$>$ "Corresponding Parts of Congruent Triangles are Congruent"

- Can only be used AFTER two triangles have been proven to be congruent.
$>$ Corresponding parts refers to the matching angles \& sides of the respective triangles


## Example: Identifying "CPCT"

1. Given: $\triangle Q R S \cong \triangle F D E$ (diagram as shown) Identify all pairs of corresponding parts.

| Corresponding Sides | Corresponding Angles |
| :--- | :--- |
|  |  |
|  |  |


© Circles
Point O-Center of the circle shown

- Every point of the circle is the same distance from the center.
A circle is named by its center; this circle is called circle 0 (or ○○)
© Radii
$>$ Points $A, B$, and $C$ lie on circle $P(\odot P)$
- $\overline{P A}$ is called a radius
- $\overline{P A}, \overline{P B}, \& \overline{P C}$ are called radii

Theorem: All radii of a circle are congruent.


PROOFS:
2. Given: $\overline{C B} \cong \overline{C D}$
$\angle A C B \cong \angle A C D$
Prove: $\quad \angle B \cong \angle D$


| Statements | Reasons |
| :--- | :--- |
|  |  |
|  |  |

3. Given: $\overline{Y X} \cong \overline{Y Z}$
$\angle X Y W \cong \angle Z Y W$
Prove: $\quad \overline{X W} \cong \overline{Z W}$


## © No-Choice Theorem

$>$ If two angles of one triangle are congruent to two angles of a second triangle, then the third angles are congruent.


Given: $\quad \angle C \cong \angle G$

$$
\angle B \cong \angle F
$$

Conclusion: $\quad \angle D \cong \angle H$

- The two triangles need not be congruent for use to apply the No-Choice Theorem. A PROOF:

5. Given: $\angle A \cong \angle D$

Prove: $\angle E \cong \angle C$

Statements

## Reasons

d Angle-Angle-Side Theorem (AAS)
$>$ If there exists a correspondence between the vertices of two triangles such that two angles and a non-included side of one are congruent to the corresponding parts of another, then the triangles are congruent.

## A PROOF:


6. Given: $\angle G \cong \angle K$

$$
\begin{aligned}
& \angle H \cong \angle M \\
& \overline{J H} \cong \overline{O M}
\end{aligned}
$$

Prove: $\triangle G H J \cong \triangle K M O$
Statements

Statements

### 4.5 BeYOND CPCTC

Objectives: Identify medians \& altitudes of triangles. Understand why auxiliary lines are used in some proofs. Write proofs involving steps beyond CPCTC.

〕 Medians of Triangles
$>$ A median of a triangle is a line segment drawn from any vertex of the triangle to the midpoint of the opposite side.


- Every triangle has three medians.
- A median divides (or bisects) the side to which it is drawn into two congruent segments.

Identify the median \& the congruent segments formed in the diagram:

| Median | Congruent Segments |
| :--- | :--- |
| $\overline{A N}$ |  |
| $\overline{B P}$ |  |
| $\overline{C M}$ |  |

〕 "Definition of Median"
Given: median

- Conclusion: two congruent segments
- A median bisects the side (of a triangle) to which it is drawn.
> Prove: median
- If a segment from a vertex of a $\triangle$ divides the opposite side into two $\cong$ segments, it is a median.

Example: Using Medians

1. Given: $\overline{T R}$ is the median to $\overline{P S}, \mathrm{PR}=\mathrm{x}+8, \mathrm{PT}=2 \mathrm{x}-1, \mathrm{RS}=2 \mathrm{x}-6$

Find: PT


## © Altitudes of Triangles

An altitude of a triangle is a line segment drawn from any vertex of the triangle to the opposite side, extended if necessary, and perpendicular to that side.

- Every triangle has three altitudes.
- An altitude of a triangle forms right angles with one of the sides.
- Identify the altitude shown \& the right angles formed in the following diagrams:

$\triangle T R S$ - altitude: $\qquad$
right angle(s): $\qquad$

$\triangle \mathrm{ABD}$ - altitude: $\qquad$
right angle(s): $\qquad$

$\triangle K L M$ - altitude: $\qquad$
right angle(s): $\qquad$

อ "Definition of Altitude"
> Given: altitude

- Conclusion: right angle(s)
- An altitude of a $\triangle$ form right $\angle \mathrm{s}$ with the side to which it is drawn.
- Prove: altitude
- If a segment from a vertex of a $\triangle$ forms right $\angle$ s with the opposite side, it is an altitude.

อ Auxiliary Lines
Need there to be line connecting two points? No problem!

- Auxiliary lines connect two points already in the diagram.

Whenever we use an auxiliary line in a proof, we must be able to show that such a line can be drawn \& then justify it with the following postulate:

Two points determine a line.

| Statements | Reasons |
| :--- | :--- |
| $\vdots$ | $\vdots$ |
| Draw $\overline{A L}$ | Two points determine a line. |

PROOFS:
2. Given: $\overline{A B} \cong \overline{A C}$

$$
\overline{B D} \cong \overline{C D}
$$

Prove: $\triangle A B D \cong \triangle A C D$

3. Given: $\odot P$
$\overrightarrow{P R}$ bisects $\angle K P M$
Prove: $\quad \overline{P R}$ is a median

Statements $\mid$ Reasons

Could the altitude of a triangle be a median as well?
4. Given: $\overline{A E}$ is an altitude of $\triangle M A D$
$\angle 2 \cong \angle 3$
$\overline{E L} \cong \overline{E T}$
$\angle M L E \cong \angle D T E$
Prove: $\overline{A E}$ is the median to $\overline{M D}$


| Statements | Reasons |
| :--- | :--- |
|  |  |

### 4.6 OVELLAPPING TTIANGLES

Objectives: Use overlapping triangle in proofs
Prove that two triangles are congruent in a two-column proof
Structure statements and reasons to formal a logical argument
Given: $\quad \angle J A B \cong \angle K B A$

$$
\angle 1 \cong \angle 2
$$

Prove: $\angle J \cong \angle K$


- What triangles would I prove to be congruent?
- What postulate would I use here?
- Try drawing $\triangle J A B \& \triangle K B A$ separately.


Given: $\quad \angle J A B \cong \angle K B A$

$$
\angle 1 \cong \angle 2
$$

Prove: $\angle J \cong \angle K$

| Statements | Reasons |
| :--- | :--- |
|  |  |

Helpful Hints w/Overlapping Triangles

- Draw the triangles separately.
- Outline the two triangles in different colors.
- ALSO...there will be a reflexive step-that shared side or angle.

1. Given: $\overline{Y W}$ bisects $\overline{A X}$
$\angle A \cong \angle X$
Prove: $\quad \begin{aligned} & \angle 5 \cong \angle 6 \\ & \overline{Z W} \cong \overline{Y W}\end{aligned}$


| Statements | Reasons |
| :--- | :--- |
|  |  |
|  |  |

### 4.7 TIIaNGLeS IN PrOOFS

Objectives: Use isosceles, equilateral, and right triangles in proofs
Prove that two triangles are congruent in a two-column proof Structure statements and reasons to formal a logical argument
(c) Triangles in Proofs
$>$ Isosceles Triangles

- If at least two sides of a triangle are congruent, then the triangle is isosceles.
$>$ Equilateral Triangles
- If all sides of a triangle are congruent, then the triangle is equilateral.

Right Triangles

- If a triangle has a right angle, then it is a right triangle.

〕 Isosceles Triangle Theorems
If $\Delta$, then $\Delta \Delta$.

- If two sides of a triangle are congruent, then the angles opposite the sides are congruent.
$>$ If $\triangle$, then $\Delta$.
- If two angles of a triangle are congruent, then the sides opposite the angles are congruent.
PROOFS:

1. Given: $\quad \begin{array}{ll}\overline{Q M} \cong \overline{Q P} \\ & \overline{M N} \cong \overline{P O}\end{array}$

Prove: $\quad \angle Q N P \cong \angle Q O M$
Statements

## Reasons


2. Given: $\overline{B I} \cong \overline{R D}$
$\overline{R I} \cong \overline{B D}$
$\angle 3$ is comp. to $\angle 2$
Prove: $\triangle R I B$ is a right $\triangle$


| Statements | Reasons |
| :--- | :--- |
|  |  |
|  |  |

### 4.8 HL POSTULITE

Objectives: Use the HL postulate to prove right triangles are congruent Prove that two triangles are congruent in a two-column proof Structure statements and reasons to formal a logical argument

## 〕 The Hypotenuse-Leg Postulate

$>$ If the hypotenuse \& a leg of one right triangle are congruent to the corresponding parts of another right triangle, the triangles are congruent. ( HL )


Examples: What additional information would you need to prove the triangles congruent by the HL theorem?

1. $\triangle S T R \cong \triangle P Q N$

2. $\triangle A B C \cong \triangle D C B$


## PROOFS:

3. Given: $\overline{W J} \cong \overline{K X}$
$\angle J W X$ is a right angle $\angle X K J$ is a right angle
Prove: $\triangle W J X \cong \triangle K J X$


Statements
Reasons
4. Given: $\overline{G H} \cong \overline{G K}$
$\overline{G J}$ is an altitude
Prove: $\quad \overrightarrow{G J}$ bisects $\angle H G K$
Statements

### 4.9 Perpendicular Bisectors \& equIIISTance

Objectives: Recognize the relationship between equidistance and perpendicular bisectors
Prove that two triangles are congruent in a two-column proof Structure statements and reasons to formal a logical argument

」 A Right-Angle Theorem
$>$ If two angles are both supplementary and congruent, then they are right angles.

Given: $\quad \angle 1 \cong \angle 2$
$\angle 1 \& \angle 2$ form a linear pair
Conclusion: $\angle 1 \& \angle 2$ are right angles

© Perpendicular Bisector
The perpendicular bisector of a segment is the line that bisects and is perpendicular to the segment.

## Perpendicular Bisector Theorem

Words If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.
Symbols If $C$ is on the perpendicular bisector of $\overline{A B}$, then $\overline{C A} \cong \overline{C B}$.




Point $A$ \& point $B$ are equidistance from the endpoints $C \& D$ of $\overline{C D}$.
$\overleftrightarrow{A B}$ is the perpendicular bisector of $\overline{C D}$.
ஓ Equidistance Theorems:
If two points are each equidistant from the endpoints of a segment, then the two points determine the perpendicular bisector of that segment.

## PROOFS:

Prove that...The line joining the vertex of an isosceles triangle to the midpoint of the base is perpendicular to the base.

1. Given: $\triangle A B C$ is isosceles, with

$$
\overline{A B} \cong \overline{A C}
$$

$E$ is the midpoint of $\overline{B C}$
Prove: $\overleftrightarrow{A E} \perp \overline{B C}$


Statements
2. Given: $\overleftrightarrow{A D}$ is the $\perp$ bisector of $\overline{B C}$

Prove: $\quad \overline{A B} \cong \overline{A C}$

3. Given: $\overline{A B} \cong \overline{A D}$
$\overline{B C} \cong \overline{C D}$
Prove: $\quad \overline{B E} \cong \overline{E D}$


Statements

## alGeBra review ~ INeQualities

Objective: Solve an inequality using the addition and multiplication principles and then graph the solution set

อ Inequalities
An inequality is any sentence containing $<,>, \leq$, or $\geq$.

- Solution ~ any replacement for the variables that makes an inequality true
- Solution Set ~ the set of all solutions
$>$ Graphing Inequalities:



Schultz says:
SOLVE INEQUALITIES AS YOU WOULD EQUATIONS...
...BUT BE CAREFUL WHEN MULTIPLYING OR DIVIDING BY A NEGATIVE NUMBER.

$$
\begin{aligned}
2 x-5 & \geqslant 7 \\
+5 & +5 \\
\hline 2 x & \geq 12 \\
\frac{2 x}{2} & \geq \frac{12}{2} \text { ditch the } 5 \\
x & \geqslant 6
\end{aligned}
$$

OK, so what does this answer mean?
(It's super important in math to understand what your answers mean!)
We can graph it on a number line:


So, in our original problem, $2 x-5 \geq 7$, $x$ can be $6 \ldots$ or $x$ can be a number bigger than 6 .


Schultz says:
SOLVE INEQUALITIES AS YOU WOULD EQUATIONS...
... BUT BE CAREFUL WHEN MULTIPLYING OR DIVIDING BY A NEGATIVE NUMBER.

Solve

$$
\begin{aligned}
-3 x & \leq 6 \\
-\frac{3 x}{-3} & \leq \frac{6}{-3} \text { ditch the }-3 \\
x & \leq-2
\end{aligned}
$$

It looks ok ... But, is it?


This means that $X$ can be -2 or any other number less than -2 .
Let's check!

$$
\begin{aligned}
-3 x & \leq 6 \\
x=-2 \rightarrow-3(-2) & \leq 6 \\
6 & \leq 6 \quad \text { Yep that works. } \\
x=-4 \rightarrow-3(-4) & \leq 6 \\
12 & \leq 6 \quad \text { NO WAY, DUDE: }
\end{aligned}
$$

It didn't work. Wazzup with that?
Here's the freaky thing:
When you divide (or multiply) by a negative number, you mess up the inequality sign!


## EXAMPLES

Solve each inequality and graph the solution set.
$1.8 n-4<-116$

2. $6-6 x \leq-54$

3. $\frac{m}{3}+4>2$

4. $\frac{y-5}{2}>-4$

5. $-x-4 \geq 14-4 x$

6. $4(x+2)>1-3 x$


## alGeBra review ~ cOMPOUND INeQualitles

Objective: Solve compound inequalities and graph the solution set
© Compound Inequality
Consist of two or more inequalities joined by the word "and" or the word "or"
$>$ Conjunction

- When two or more sentences are joined by the word "and"
- $-2<x$ and $x<1 \leftrightarrow-2<x<1$
- The solution set of a conjunction is the intersection of the solution sets.

Example:

$$
-3 \leq 2 x-1 \leq 5
$$

Get the $x$ alone in the middle...
$-3 \leq 2 x-1 \leq 5$ ditch the -1
$+1+1+1$
$-2 \leq 2 x \leq 6$
$\frac{-2}{2} \leq \frac{2 x}{2} \leq \frac{6}{2}$ ditch the 2
$-1 \leq x \leq 3$


Your turn:

$$
3<3+4 x \leq 31
$$



〕 Compound Inequality
$>$ Consist of two or more inequalities joined by the word "and" or the word "or"
Disjunction

- When two or more sentences are joined by the word "or"
- $-2<x$ or $x<1$
- The solution set of a disjunction is the union of the individual solution sets.


## EXAMPLES

Solve each inequality and graph the solution set.
2. $-7 x \leq-28$ or $x+3<-7$

3. $\frac{n}{3} \leq-2$ or $n-5>-4$


## 

## alGebra review ~ aBSOLUTe Value INequalities

Objective: Solve inequalities with absolute value expressions and graph the solution set
d Absolute Value Inequalities
For all real numbers $a \& b, b>0$, the following statements are true:

- If $|\boldsymbol{a}|<\boldsymbol{b}$, then $-\boldsymbol{b}<\boldsymbol{a}<\boldsymbol{b}$
- If $|\boldsymbol{a}|>\boldsymbol{b}$, then $\boldsymbol{a}>\boldsymbol{b}$ or $-\boldsymbol{a}>\boldsymbol{b}$

| $\|\boldsymbol{a}\|<\boldsymbol{b}$ | $\|\boldsymbol{a}\|>\boldsymbol{b}$ |
| :---: | :---: |
| Solve $\|x\|<5$ |  |
| $\boldsymbol{1} \uparrow$ | $\|x\|>1$ |



$x<-1$ or $x>1$

## How to Solve Absolute Value Inequalities

1. Isolate the absolute value expression on the left side of the inequality.
2. Rewrite as two inequalities-sans absolute value bars (Don't change the inequality symbols.)
a. a.v. expression < value
b. -(a.v. expression) < value
i. You're negating the a.v. expression in the second inequality.
3. Solve each inequality.
4. Graph the solution set.
© Some absolute value inequalities have no solutions.
i.e. $|4 x-9|<-7$ is never true.

- Since the absolute value of a number is always positive or zero, there is no replacement for $x$ that will make the sentence true.
- So less than a negative number is never true.
© Some absolute value inequalities are always true.
i.e. $|10 x+3|>-5$ is always true.
- Since the absolute value of a number is always positive or zero, any replacement for $x$ will make the sentence true.
- So greater than a negative number is always true.


## EXAMPLES

Solve each inequality and graph the solution set.
STEP 1: ISOLATE
STEP 2: REWRITE
STEP 3: SOLVE

1. $|9 n-6|-6 \geq 24$
```
STEP 4: GRAPH
```



STEP 1: ISOLATE
2. $-2|3-2 a| \leq-34$

STEP 2: REWRITE
STEP 3: SOLVE

STEP 4: GRAPH

STEP 1: ISOLATE
3. $\frac{|6-10 m|}{10} \geq 2$

STEP 4: GRAPH

STEP 1: ISOLATE
4. $3|6 x-6|+2 \leq 74$

STEP 4: GRAPH


STEP 2: REWRITE
STEP 3: SOLVE


STEP 2: REWRITE
STEP 3: SOLVE


## algebra review ~ linear INequalities

Objective: Graph linear inequalities in two variables

## Graph $2 x+y>4$ 1

First, do the line:


We make it a dashed line since there is no $=$.

So, which side do we shade?
Let's try ( 0,0 ):

$$
\begin{aligned}
2 x+y & >4 \\
2(0)+0 & >4 \\
0 & >4 \quad \text { Nope! }
\end{aligned}
$$

( 0,0 ) doesn't work! That means nothing on that side will work ... So, all the good points must be on the other side!

## Solution:



All the points in the shaded region work in

## EXAMPLES

Graph each linear inequality.

1. $7 x+4 y \geq 8$

2. $x+5 y<10$

